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Abstract
Resting state network (RSN) functional connectivity (FC) has been investigated under a wealth of different healthy and compromised conditions. Such investigations 

are often dependent on the defined spatial boundaries and nodes of so-called canonical RSNs, themselves the product of extensive deliberations over distinctions 

between functional magnetic resonance imaging (fMRI) noise and neural signal, specifically in the context of the healthy waking state. However, a similar unbiased 

cataloging of noise and networks remains to be done in other states, particularly sleep, a healthy alternate mode of the brain that supports distinct operations from 

wakefulness, such as dreaming and memory consolidation. The purpose of this study was to explicitly test the hypothesis that there are RSNs unique to sleep. 

Simultaneous electroencephalography (EEG) and fMRI was used to record brain activity of non-sleep-deprived participants. Independent component analysis was 

performed on both rapid eye movement (REM; N = 7) and non-REM sleep stage fMRI data (non-REM2; N = 28, non-REM3; N = 11), with the resulting components 

spatially correlated with the canonical RSNs, for the purpose of identifying spatially distinct RSNs. Surprisingly, all low-correlation components were positively 

identified as noise, and all high-correlation components comprised the canonical set of RSNs typically observed in wake, indicating that sleep is supported by much 

the same RSN architecture as wakefulness, despite the unique operations performed during sleep. This further indicates that the implicit assumptions of prior 

studies, i.e. that the canonical RSNs apply to sleep FC analysis, are valid and have not overlooked sleep-specific RSNs.
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Statement of Significance

Resting state network (RSN) functional connectivity (FC) analyses have generated important insights into how brain networks communicate 
with each other under healthy and pathological conditions. Currently, sleep analyses make use of RSNs defined in wakefulness. However, it 
remains to be determined whether new RSNs manifest in sleep to support unique sleep-related operations such as dreaming and memory 
consolidation. Using wakefulness RSNs in sleep analyses could therefore lead to a misinterpretation of distinctions between healthy and 
pathological brain connectivity in sleep. After searching for new RSNs, this study indicates that sleep is supported by much the same RSN 
architecture as wakefulness. This clarification is long overdue; improved understanding of sleep brain-connectivity could lead to improved 

diagnostic tools for pathological sleep conditions.
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Introduction

Resting state network (RSN) functional connectivity (FC) has 
been investigated under a wealth of different conditions 
including healthy wakefulness [1, 2], sleep states [3], as well as 
compromised conditions, or altered states of consciousness, 
such as sedation [4], vegetative state [5], epilepsy [6], Alzheimer’s 
disease [7–9], and schizophrenia [10]. Such investigations often 
include considerations of both within- and between-RSN FC. 
However, such considerations are themselves dependent upon 
the defined spatial boundaries of the RSNs being investigated.

For the most part, these boundaries are taken for granted, as 
RSNs have now been studied for over two decades, beginning 
with the identification of the first RSN more than two decades 
ago, when it was shown that spontaneous activity across 
bilateral motor networks was strongly correlated [1]. Further 
studies recognized the existence of other RSNs, including the 
default mode network (DMN), a set of regions that first came 
under scrutiny because they collectively reduced their activity 
during goal-directed tasks [11] and were finally determined to be 
a unique RSN in their own right when it was acknowledged that 

they functioned as an interconnected network for supporting 
“baseline” and internally focused brain activity [12]. The 
catalogue of reproducible RSNs is now well established, and 
they are commonly grouped into about 10 canonical networks 
(see Figure 1A), typically comprising primary sensory networks 
(e.g. auditory, somatomotor, and up to three visual networks) as 
well as higher order networks (e.g. DMN, executive control and 
two independent, lateralized frontoparietal networks). These 
RSNs noticeably resemble the spatial organization of networks 
that support discrete cognitive functions [13, 14]. For example, 
the so-called “auditory” RSN involves bilateral regions in the 
superior temporal gyrus.

It is the spatial bounds of these canonical RSNs that serve 
as the basis for between- and within-RSN FC analysis in the 
aforementioned compromised conditions, states of altered-
consciousness and sleep states. Specifically, the regions of 
interest whose timecourses are used to define RSN FC are based 
on a priori knowledge of the nodes of RSNs, as they are defined in 
wakefulness. For example, the well-established finding [3] that 
FC between anterior and posterior nodes of the DMN is reduced 
in slow wave sleep makes use of seed-based correlation analysis 

Figure 1. External templates used for spatial comparison and group-level above-threshold independent components (ICs) for each sleep stage. (A) The 10 external 

templates used in the spatial correlation, with representative sagittal, coronal, and axial slices. (B, C, D) Group-level above-threshold ICs with the highest spatial 

correlations to each of the 10 external templates, for each sleep stage. Color bars indicate Z statistics based on the estimated standard error of residual noise. Spatial 

correlation values with respective templates are presented in the upper left corner for each IC. NREM2/3 = non-REM sleep stage 2/3, REM = rapid eye movement sleep 

stage.
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(SCA) wherein the seed of interest is the posterior cingulate 
cortex (PCC), an important DMN node identified in wakefulness. 
However, the application of RSNs defined in wakefulness to non-
healthy, or sleep-related RSN FC analyses is not fully justified, 
and the existence of novel RSNs specific to other states has 
never been explicitly tested or explored. This is the major aim 
of the current study.

Indeed, given the established association between the 
canonical RSNs and networks that support cognitive function 
during healthy wakefulness, it could be expected that 
noncanonical RSNs would arise to support offline information 
processing. That said, additional, noncanonical RSNs have yet 
to be identified in any investigations of non-healthy conditions 
or healthy sleep states. However, it is possible that such 
negative findings are at least partly a consequence of biased 
analysis approaches that make the implicit assumption that 
the set of RSNs typically found in wakefulness applies to all 
other conditions. For example, a number of sleep studies have 
restricted their analysis to RSNs taken from the canonical set 
(e.g. the DMN [3]) or explicitly looked for RSNs that resemble 
the canonical set [15], rather than explicitly investigate whether 
unique RSNs might exist. It therefore remains to be tested 
whether noncanonical RSNs exist in non-healthy conditions or 
across healthy sleep-wake states.

Sleep is a particularly salient target for such a test, as it is 
a healthy alternate mode of the brain, with known functions 
distinct from the cognitive functions sustained during 
wakefulness. It is therefore possible that an unbiased search 
for noncanonical RSNs might yield RSNs associated with 
these sleep-specific functions. By contrast, compromised 
conditions or altered states of consciousness are less likely to 
manifest noncanonical RSNs, given that they do not express 
new functions; rather the same functions that are expressed 
in wakefulness become impaired. Unique sleep functions that 
could manifest unique noncanonical RSNs include memory 
consolidation (via memory reactivation and replay), involving 
the striatum, hippocampus, and medial temporal lobe [16–
19]; sleep-spindle-related activation that supports reasoning 
abilities, involving thalamocortical regions and basal ganglia 
[20]; and rapid eye movement (REM) sleep maintenance, 
including dream production, involving thalamus and occipital 
regions [21–23]. Not to mention other putative yet-to-be-
discovered functions of sleep.

In addition, sleep can itself be subdivided into at least 
two further stages, each of which is characterized by unique 
electroencephalography (EEG) signatures; e.g. REM (demarcated 
by the presence of eye movements, loss of muscle tone, and 
desynchronized low-voltage electrophysiological oscillations) 
and non-REM (NREM) stages. NREM sleep can be further 
subdivided into NREM stage 1 (NREM1), defined by a loss of 
posterior alpha band power; stage 2 (NREM2), which sees 
the appearance of EEG waveforms called sleep spindles and 
K-complexes; and stage 3 (NREM3) dominated by extensive 
slow wave delta oscillations [24]. Any of these stages may be 
accompanied by the manifestation of noncanonical RSNs in 
relation to these unique forms of neuronal communication that 
are remarkably distinct from waking brain activity.

The purpose of this study was to explicitly test whether new 
RSNs exist in sleep by examining all sleep stages for RSNs that 
do not match the canonical set. It was hypothesized that new 
RSNs would be identified and that these could be related to 

sleep-specific neural activation, functions, or mentation specific 
to sleep.

Methods

Participants

Forty-five participants were recruited for this study. Of these, 
nine failed to meet the inclusion criteria by not complying with 
the pre-study sleep/wake schedule, and were thus not included 
in the study. The remaining 36 were healthy right-handed adults 
(21 female) 18–34  years of age (M  =  23.7, SD  =  3.6). An a priori 
statistical power analysis was not performed, which could be 
considered a limitation; however, the number of participants 
included is consistent with previous studies investigating RSNs 
in sleep [3, 15, 25]. All participants were non-shift workers and 
medication-free, with no history of head injury or seizures; had 
a normal body mass index (<25); and did not consume excessive 
caffeine, nicotine, or alcohol. Further, all scored less than 10 on 
the Beck Depression [26] and the Beck Anxiety [27] Inventories 
and had no history or signs of sleep disorders, as indicated by 
the Sleep Disorders Questionnaire [28]. All participants were 
required to keep a regular sleep–wake cycle (bedtime between 
22:00 and 24:00, wake time between 07:00 and 09:00) and to 
abstain from taking daytime naps at least 7 days prior to, and 
throughout participation in the study. Adherence with this 
schedule was monitored using both sleep diaries and wrist 
actigraphy (Actiwatch 2, Philips Respironics, Andover, MA). 
All participants met the magnetic resonance imaging (MRI) 
safety screening criteria. In addition, participants were given 
a letter of information, provided informed written consent 
before participation, and were financially compensated for 
their participation. This research was approved by the Western 
University Health Sciences Research Ethics Board.

Of the 36 participants who met the study inclusion 
criteria, data for 34 participants were included in the analysis 
(see Table  1). One participant withdrew from the study due 
to discomfort. Another did not sleep during the combined 
electroencephalography-functional MRI (EEG–fMRI) session 
but did have wake resting state data. Of the remaining 34 
participants (21 female, M = 23.7, SD = 3.7), all had wake resting 
state data, but only 28 had some stage of sleep data above the 
bare-minimum 3 minute threshold. In addition, not all of the 
wake resting state data were used, as initially 5 minute wake 
resting state scans were used, and this was later modified to 
be 8 minutes, in the interest of maximizing data availability. 
Thus 29 participants were used in the analysis of the wake data 
(18 females, M  =  23.8, SD  =  4.0), in order to capitalize on the 
longer resting state episodes. Of the 28 participants who slept, 
data from 25 participants were used in the analysis of sleep 

Table 1. Minutes of Data Extracted Per Sleep Stage

Measure Wake NREM2 NREM3 REM

Mean 7.9 15.9 18.9 9.8
Standard deviation 0.0 10.5 18.9 8.0
Minimum (nonzero) 7.9 6.3 4.0 3.6
Maximum 7.9 44.1 67.3 21.6
N 29/34 25/34 11/34 7/34

REM = rapid eye movement sleep stage, NREM2/3 = non-REM2/3 sleep stages.
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stage NREM2 (15 female, M = 24.2, SD = 4.0). Of these same 28, 
11 participants (6 female, M = 22.5, SD = 3.8) had NREM3 data. 
Finally, of these same 28, 7 participants (3 female, M  =  22.1, 
SD = 2.4) had REM data.

Functional data

Wake data set
A total of 36 participants had recorded wake RSN data. Of these, 
29 had 7.9 minutes of data, with the remainder having only 5.4 
minutes. To maximize the quality of the group independent 
component analysis (ICA; i.e. by maximizing the number 
of volumes used in the single-participant data), the wake 
resting state analysis used the 7.9 minutes datasets from the 
aforementioned 29 participants, for a total of 230 minutes of 
data.

Sleep data set

Overall, participants managed to obtain the full spectrum 
of sleep stages (NREM1, NREM2, NREM3, and REM sleep). On 
an individual basis, however, the majority of participants 
maintained sleep in only a few of the stages for a duration 
long enough to be considered sufficient for ICA analysis. Given 
the difficulty in obtaining REM sleep in non-sleep-deprived 
individuals in the MRI scanner environment (e.g. due to noise 
and participant comfort), only four participants managed to 
transition through all three sleep-stages of interest (NREM2, 
NREM3, and REM) for a duration considered sufficient for the 
ICA analysis. In all cases, sleep scoring identified a pattern in 
which participants transitioned between sleep stages of variable 
duration; from less than 20 seconds (the shortest sleep scoring 
period) to 69.3 minutes (see Table  1 for the distribution of 
sleep data used in the final set of analyses). As expected, sleep 
stage NREM1 was mostly insufficient in duration for analysis 
purposes. Thus, considering the brief and transitional nature of 
this stage, it was not included in the analyses.

As the group-ICA analysis used in this study requires single-
participant inputs of equal length, participant fMRI data for a 
given sleep stage was segmented into equal length “blocks.” 
Block length was determined by the length of the shortest 
available single-participant dataset for a given sleep stage (so 
long as this length exceeded a bare minimum 3 minutes). For 
example, if 10 participants had NREM3 data, and the participant 
with the least amount of data had 3 minutes worth, then the 
available data for the remaining participants was segmented 
into 3 minute blocks.

Twenty-eight participants were able to sustain a sufficient 
amount of NREM2 sleep for the ICA analysis, with the shortest 
duration for a given participant being 4 minutes. In many 
cases, a single participant had more than one continuous bout 
of NREM2, such that the full group generated a total of 599 
minutes of NREM2 data. Given the abundance of NREM2 data, 
the datasets for three participants were not included in order to 
maximize the length of an NREM2 block. Overall, 63 blocks of 6.3 
minutes’ duration acquired from 25 participants were used, for 
a total of 396.9 minutes.

In the case of NREM3, 11 participants had data above the 
minimum 3 minutes’ cutoff, for a total of 236.4 minutes of 
available NREM3 data, with all of these participants having at 

least 4 minutes of data. Overall, 52 blocks of 4 minutes were used 
in the ICA analysis of NREM3 data, for a total of 205.9 minutes 
of data.

Very few EEG–fMRI studies report analysis of REM sleep, 
and thus knowledge of REM sleep from fMRI studies is limited. 
Here, 7 participants had REM data above the cutoff of 3 
minutes. Overall, 87.7 minutes of 3 minute plus duration data 
were available from all participants. From this, 19 blocks of 3.6 
minutes were extracted for the REM ICA analysis, for a total of 
68.4 minutes of data.

Experimental procedure

Each participant underwent a screening/orientation session 
1 week prior to the experimental sleep session. The scanning 
session took place between 21:00 and 24:00, during which time 
simultaneous EEG–fMRI was recorded while participants slept 
in the scanner. Unlike the majority of similar past studies, 
participants were not sleep deprived. The scanning session 
consisted of a structural scan of 8 minutes, followed by an eyes-
closed wake resting state scan. Participants were then informed 
that they were free to fall asleep in the scanner. This period 
lasted up to 2.2 hours. To be included in the analysis of the sleep 
data, participants were required to sleep for a period of at least 5 
minutes of uninterrupted NREM sleep during the sleep session; 
however, in the final analysis no block of less than 3.6 minutes’ 
duration was used. Following the sleep session, participants 
were allowed to sleep in the nearby sleep laboratory for the 
remainder of the night.

Polysomnographic recording and analysis

Recording parameters
EEG was recorded using a 64-channel magnetic resonance 
(MR)-compatible EEG cap (Braincap MR, Easycap, Herrsching, 
Germany) using two MR-compatible 32-channel amplifiers 
(Brainamp MR plus, Brain Products GmbH, Gilching, Germany). 
EEG caps included scalp electrodes referenced to FCz. Two bipolar 
electrocardiogram (ECG) recordings were taken from V2–V5 and 
V3–V6 using an MR-compatible 16-channel bipolar amplifier 
(Brainamp ExG MR, Brain Products GmbH, Gilching, Germany). 
Using high-chloride abrasive electrode paste (Abralyt 2000 HiCL; 
Easycap, Herrsching, Germany), electrode-skin impedance was 
reduced to less than 5 kOhm. In order to reduce movement-
related EEG artifacts, participants’ heads were immobilized in 
the MRI head-coil using foam cushions. EEG was digitized at 5000 
samples per second with a 500 nV resolution. Data were analog 
filtered by a band-limited low-pass filter at 500 Hz and a high-
pass filter with a time constant of 10 seconds corresponding to 
a high-pass frequency of 0.0159 Hz. Data were transferred via 
fiber optic cable to a personal computer where Brain Vision 
Recorder Software, Version 1.x (Brain Vision, Gilching, Germany) 
was synchronized to the scanner clock. EEG scanner artifacts 
were removed in two separate steps: (1) MRI gradient artifacts 
were removed using an adaptive average template subtraction 
method [29] implemented in Brain Products Analyzer, and 
down-sampled to 250 Hz; (2) the r-peaks in the ECG were 
semiautomatically detected, visually verified, and template 
subtraction [30] was used to remove ballistocardiographic 
artifacts time-locked to the R-peak of the QRS complex of the 
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cardiac rhythm. Finally, EEG was low-pass filtered (60 Hz) and 
re-referenced to averaged mastoids. Sleep stages were scored in 
accordance with standard criteria [24] using the “VisEd Marks” 
toolbox (https://github.com/jadesjardins/vised_marks) for 
EEGLAB [31].

MRI imaging acquisition and analysis

Recording parameters
Brain images were acquired using a 3.0 T TIM TRIO MRI 
system (Siemens, Erlangen, Germany) and a 64-channel head 
coil. A  structural T1-weighted MRI image was acquired for 
all participants using a 3D MPRAGE sequence (TR  =  2300  ms, 
TE  =  2.98  ms, TI  =  900  ms, FA  =  9°, 176 slices, FoV  =  256  × 
256  mm2, matrix size  =  256  × 256  × 176, voxel size  =  1  × 1  × 
1  mm3). Multislice T2*-weighted fMRI images were acquired 
during the sleep session with a gradient echo-planar sequence 
using axial slice orientation (TR = 2160 ms, TE = 30 ms, FA = 90°, 
40 transverse slices, 3 mm slice thickness, 10% inter-slice gap, 
FoV = 220 × 220 mm2, matrix size = 64 × 64 × 40, voxel size = 3.44 × 
3.44 × 3 mm3). In order to obtain EEG with time-stable artifacts, 
which aligned to the timing of the EEG recordings, the MR scan 
repetition time was set to 2160  ms, such that it matched a 
common multiple of the EEG sample time (0.2 ms), the product 
of the scanner clock precision (0.1 μs), and the number of slices 
(40) used [32].

Functional data classification and block parcellation

All sleep session functional volumes were scored according to 
standard sleep-stage scoring criteria [24] by an expert, registered 
polysomnographic technologist. To be included in the fMRI 
analysis, the EEG had to be visibly movement artifact-free. 
Volumes were classified as wake, NREM1, NREM2, NREM3, or 
REM. Notably, wake data used in the analysis were taken from 
the wake resting state session only, despite segments of wake 
being present in the sleep session data. Following scoring, each 
segment of sleep-stage volumes was parcellated into equal-size 
blocks, whose length was specific to each given sleep stage.

Preprocessing

Blocks were individually preprocessed using the Oxford Centre 
for Functional Magnetic Resonance Imaging of the Brain 
Software Library (FMRIB, Oxford, United Kingdom; FSL version 
5.09 [33]). Specifically, functional volumes within each block were 
realigned using FSL’s MCFLIRT tool [34], which performs rigid 
body transformations. Non-brain voxels were also extracted 
using FSL’s BET tool [35]. Volumes were then spatially smoothed 
using a Gaussian kernel of 5 mm full-width at half-maximum 
(FWHM) and high-pass temporal filter (Gaussian-weighted least-
squares straight line fitting, FWHM = 2000 s). Functional volumes 
were then registered to the MNI152 standard space (McConnell 
Brain Imaging Centre, Montreal Neurological Institute) using 
12 degree-of-freedom affine registration. Finally, each block 
was individually cleaned of nonneuronal artifacts (e.g. cardiac 
pulsation, motion related, white matter [WM]) using the FIX 
plug-in for the FSL package [36, 37], an automatic noise detection 
and removal algorithm. Prior to using FIX, FSL’s MELODIC tool 
[38] was used to generate a set of independent components (ICs) 

for each block. MELODIC prewhitens and variance normalizes 
all time series prior to applying probabilistic ICA, which outputs 
a set of spatial maps converted into Z statistic maps based on 
estimated standard error of residual noise. MELODIC’s default 
dimensionality estimation function automatically estimates 
the number of ICs by performing a Bayesian analysis. FIX 
assessed each of these ICs as noise or signal, after identifying 
more than 180 distinct spatial and temporal features for each 
IC and feeding these into a multilevel classifier. Temporal 
features associated with nonneuronal ICs include sudden 
changes in time series’ amplitude, frequency-domain power at 
high frequencies, and correlation of the time series with WM or 
cerebrospinal fluid (CSF) extracted time series. Spatial features 
include having a large number of small clusters and high 
overlap with brain boundaries or with WM/ventricles/CSF areas. 
FIX classification performance has been evaluated to have an 
average true negative rate (noise correctly classified as such) of 
98.9% [36]. ICs classified as noise were then subtracted from the 
ICA mixing matrix and a new set of “clean” functional volumes 
was generated.

Group-level analysis

Group spatial ICA (with a model order of 30 components) was 
performed with MELODIC on all available blocks for a given 
sleep stage in order to maximize the available data for deriving 
group-level maps. The resulting 30 ICs (per sleep stage) were 
then individually compared with 10 canonical spatial templates 
derived from a separate wake RSN study [14] (see Figure  1A) 
using spatial correlation (FSL utility; fslcc). In order to be 
consistent with current approaches, a liberal spatial correlation 
threshold of r > 0.2 was selected (for comparison, Tong et al. [39] 
and Reineberg et  al. [40] used similar cutoffs of r > 0.25 and r 
> 0.21, respectively) to help classify ICs as either resembling 
the canonical set or being a potentially new RSN for further 
inspection (See Supplementary Figure S3 in the Supplemental 
Material for the distribution of available correlation values in 
this study). However, both above- and below-threshold ICs were 
also (visually) examined carefully for spatial differentiation from 
the canonical set. It is important to emphasize here that the use 
of a specific spatial correlation threshold (statistically based, or 
otherwise) will always be arbitrary, in the case of classifying ICs 
as RSNs. This is because RSN classification must always take 
into account other IC features, such as frequency–power. That 
said, a threshold of around r > 0.2 seems to work as a useful 
heuristic for early IC screening. Clearly identifiable noise-related 
below-threshold components were then screened by hand, in 
accordance with the general guidelines in Griffanti et  al. [41] 
and Kelly et  al. [42]. Note that it is impossible to completely 
separate noise from networks in fMRI data, at either the single-
participant or group level; therefore, noise ICs would be expected 
at the group level despite cleaning at the single-participant level 
(more specifically, timecourse patterns associated with noise 
can be too infrequent for ICA to detect at the single-participant 
level, yet, importantly, they can repeat sufficiently across 
multiple participants, so that they manifest as statistically 
independent and can therefore be reliably detected at the group 
level). Briefly, in the screening procedure, IC spatial features 
were examined for overlap with non-gray matter areas such as 
those comprising WM or CSF and IC  frequency–power spectra 
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were examined for power distribution across all frequencies, or 
power concentration in high frequencies. The intention was to 
follow-up this screening with a more sophisticated fingerprint 
analysis tool [43], as well as a FC analysis between candidate 
components and the canonical RSNs; however, the lack of 
remaining components following this screening procedure 
rendered such steps unnecessary.

Finally, we conducted a follow-up analysis in which we 
repeated the group-level ICA analysis described earlier, using a 
dataset consisting of all of the sleep stages combined together 
(note: in this analysis, the blocks were cut to the same length 
across sleep stages; i.e. to 129 volumes). This was done in an 
attempt to determine whether the ICA might extract new spatial 
patterns that would otherwise be missed in an analysis of 
individual sleep stage data.

Results

ICA analysis and template comparison

Non-noise group-level above-threshold ICs largely matched 
the RSNs from the external dataset [14], with low correlation 
components comprising constituent regions of a given 
canonical RSN rather than being located in a different spatial 
region entirely (see Figure 1 for sample images).

Sample below-threshold ICs are shown in Figure  2, along 
with their frequency–power spectra. All below-threshold ICs 
had time course properties that allowed them to be positively 
identified as nonneuronal artifacts, in accordance with standard 
identification procedures [41, 42]. For example, the first IC 
in Figure  2A overlaps significantly with WM regions and the 
second IC overlaps with CSF-containing regions and also has 
power distributed across all frequencies (i.e. it is not restricted 

to low frequencies as is typical of RSNs). As such, contrary to 
our predictions, none could be said to represent spatially unique 
RSNs differentiable from canonical RSNs in any sleep stage of 
interest.

The follow-up analysis (in which the group ICA was 
performed on a dataset composed of all the sleep-stage data 
combined together) yielded similar results; i.e. above-threshold 
ICs largely matched the RSNs from the external dataset and 
below-threshold ICs were positively identified as nonneuronal 
artifacts (see Figure 3 for sample images).

Finally, for reference, color-coded correlation values for all 
30 group-level ICs for all stages (including the combined-stages 
dataset) are presented in the Supplementary Material (see 
Supplementary Figures  S1 and S2), with their best-matched 
external templates indicated.

Discussion
This is the first study to use combined EEG and fMRI to 
examine all sleep stages with the explicit purpose of identifying 
noncanonical sleep-specific RSNs. It was hypothesized that 
some new RSNs would be discovered and that these could 
be related to aspects of mentation specific to sleep, much as 
waking cognitive functions are related to the canonical RSNs. 
Surprisingly, no new sleep-specific RSNs were found in any 
sleep stage, despite a directed search using a uniquely rich 
dataset, as all below-threshold ICs were carefully inspected 
and positively identified as nonneuronal artifacts. These results 
strongly suggest that there are no sleep-specific RSNs. Rather, 
the canonical RSNs that seemingly support waking mentation 
also support (or at the very least, co-occur with) sleep-specific 
functions and thus, the repertoire of canonical RSNs present 
in wake comprises the full set across sleep-wake states. 

Figure 2. Sample below-threshold independent components (ICs) in each sleep stage. (A, B, C) A selection of below-threshold group-level ICs, for each sleep stage 

(representative sagittal, coronal, and axial slices shown). Color bars indicate Z statistics based on the estimated standard error of residual noise. Frequency–power 

spectra are shown immediately below each IC. Highest template-correlation value is indicated in top left corner for each IC. NREM 2/3 = non-REM sleep stage 2/3, 

REM = rapid eye movement sleep stage.
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Moreover, the results of previous RSN FC studies that made 
use of RSN nodes defined by wakefulness studies can now be 
confirmed to stand on more solid ground, and appear to have 
not inadvertently overlooked sleep-specific RSNs. Importantly, 
these findings suggest that the  unique functions (e.g. offline 
memory consolidation), cognitive processes (e.g. dreaming), 
electrophysiological features and forms of communication (e.g. 
spindles, k-complexes, slow waves), which characterize sleep 
stages (e.g. NREM1, 2, 3, REM), surprisingly, do not manifest or 
require unique sleep-specific RSNs.

There are a number of methodological limitations that could 
explain this result. In particular, the quality of a search for a 
new RSN can only be measured against two definitions; what 
currently  constitutes an RSN and what might constitute an 
RSN unique from what is currently defined as an RSN. Given 
that the functional role of RSNs is presently speculative, such 
definitions must be delimited by a collection of spatial and 
temporal properties, the most important of which are those 
that would rule out a potential RSN from being a known source 
of nonneuronal blood oxygen level dependent artifacts. If this 

study has failed to recognize the existence of a “sleep-RSN,” 
then this failure likely rests on the assumptions made about 
the spatial and temporal properties most commonly used to 
identify RSNs.

As far as spatial properties are concerned, it is reasonable 
to question whether the spatial templates in Smith et  al. [14], 
used to rule out group-level ICs as being new RSNs, were a 
fair representation of canonical RSNs. These 10 templates 
were themselves generated from a 20 model-order ICA 
decomposition, and hence their spatial bounds are specific to 
this decomposition. A comparison of ICs from this study against 
external templates generated from a different model order 
would surely yield different results. On the other hand, although 
the correlation values would have changed, visual inspection 
of components would indicate that the same networks were 
being represented, albeit in a reduced or more elaborated form. 
Nevertheless, Ray et  al. [44] performed an assessment of ICA 
dimensionalities ranging in size from 20 to 200 and found that 
a dimensionality of around 20 is appropriate for examining 
RSNs at the scale of the 10 canonical RSNs. This same rationale 

Figure 3. External templates used for spatial comparison and group-level above-threshold independent components (ICs), with sample below-threshold ICs for a 

dataset composed of all sleep stages combined. (A) The 10 external templates used in the spatial correlation, with representative sagittal, coronal, and axial slices. (B) 

Group-level above-threshold ICs with the highest spatial correlations to each of the 10 external templates, for a dataset composed of all sleep stage data combined 

together. Color bars indicate Z statistics based on the estimated standard error of residual noise. Spatial correlation values with respective templates are presented 

in the upper left corner for each IC. (C) A selection of below-threshold group-level ICs (representative, sagittal, coronal, and axial slices shown). Color bars indicate Z 

statistics based on the estimated standard error of residual noise. Frequency–power spectra are shown immediately below each IC. Highest template-correlation value 

is indicated in top left corner for each IC.
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applies to the use of a 30 model-order decomposition for the 
data in this study.

An additional challenge involves the use of an automatic 
ICA de-noising algorithm to clean the individual blocks. 
This algorithm makes use of spatial and temporal property 
weightings that are biased toward what current RSN experts 
deem to be a nonneuronal artifact in wake resting state data. It 
is entirely possible that RSNs in sleep exhibit different temporal 
and spatial properties from their waking counterparts, e.g. 
power at oscillatory high-frequency that would cause them to 
be rejected as noise by an expert (or automated software tuned 
to the judgment of an expert). Further, without knowing the 
true functional role and neurological mechanisms of RSNs, 
there will always be some uncertainty in defining either RSNs or 
nonneuronal artifacts outside of their normal milieu (i.e. waking 
conditions).

Such concerns can be mitigated when considering the 
general robustness of the essential spatial configuration and 
temporal properties of RSNs under compromised or pathological 
conditions. There is therefore some measure of confidence 
that an RSN will have recognizable properties under healthy 
physiological conditions alternate to wake.

A more contentious issue might be the resting state lengths 
used in the analysis. The NREM3 and REM analyses made use of 
4 and 3.6 minutes’ duration blocks, respectively. Resting state 
analyses typically utilize 5–7 minutes of data, and it has been 
suggested that a 12–16 minutes resting state scan time is ideal 
[45]. However, given the difficulty in acquiring NREM3 and REM 
fMRI data, the short block lengths were considered reasonable. 
For comparison, a similar EEG–fMRI sleep study by Chow et al. 
[46] (prior to the current study, this was the largest available 
EEG–fMRI dataset available for REM) acquired 32.4 minutes of 
REM data from 4 participants out of an initial pool of 18, all of 
whom were sleep deprived for 44 hours prior to the study; this 
study acquired 75.2 minutes of REM data from 7 participants 
out of an initial pool of 35, none of whom were sleep deprived. 
The inadequacy of these datasets would appear to be unlikely, 
however, given the identification of robust canonical RSNs in 
both of these stages; however, Type II error (i.e. concluding that 
new RSNs are not present in sleep) is still a possibility.

Further, it should be noted that the ICA results are 
potentially biased by the extra number of blocks drawn from 
single-participant data with more volumes available for a given 
sleep stage. This was considered an acceptable risk, in order to 
maximize the data available for the sleep ICA analysis. In order 
to test whether this was possibly problematic, we repeated the 
analysis using only a single block for each participant with data 
available for a given stage, and were able to confirm the same 
pattern of results using this alternative approach.

Finally, it is worth pointing out that the well-established 
finding that the DMN breaks up into anterior and posterior 
nodes during slow wave sleep [3] is not contradicted by 
the present results, which indicate that the DMN can be 
detected across all sleep stages. This apparent discrepancy 
likely emerges from the different aims and approaches 
used in previous studies, which employed SCA. SCA looks 
at whole-brain correlations with the average timecourse 
within a “seed” region (e.g. the PCC). By contrast, this study 
employed ICA, which finds statistically ICs by maximizing 
the non-Gaussianity of a dataset. It is therefore consistent 
for a “complete” DMN (i.e. comprising anterior and posterior 

components), detected as a distinct component using ICA, 
to coexist with a less cohesive DMN, as identified using SCA 
methodology. Hence, the present results can be considered to 
be complementary with previous studies, given the differing 
approaches; our results show that the DMN is present in all 
sleep stages, but previous studies show that cohesiveness of 
the DMN varies as a function of sleep depth. Although beyond 
the scope of this study, future studies should consider other 
approaches, importantly, a comprehensive analysis of RSN FC 
differences across wakefulness and all sleep stages.

In conclusion, although canonical RSNs have been identified 
in sleep in a number of prior studies, these studies were not 
explicitly looking for RSNs beyond the waking set, and as a 
consequence would not have included these networks in their 
investigation, nor were they comprehensive (with REM often 
excluded; understandable given the difficulty of acquiring REM 
fMRI data). Consequently, this is the first study that explicitly 
tested whether the full inventory of RSNs is known across sleep/
wake states and represents a further step in the direction of 
defining a complete taxonomy of RSNs.

Supplementary Material
Supplementary material is available at SLEEPonline.

Funding
This research was funded by a Canada Excellence Research 
Chair (CERC) grant to author AMO.
Conflict of interest statement. None declared.

References
 1. Biswal B, et al. Functional connectivity in the motor cortex 

of resting human brain using echo-planar MRI. Magn Reson 
Med. 1995;34(4):537–541.

 2. Smith SM, et al.; WU-Minn HCP Consortium. Resting-state 
fMRI in the Human Connectome Project. Neuroimage. 
2013;80:144–168.

 3. Horovitz SG, et al. Decoupling of the brain’s default mode 
network during deep sleep. Proc Natl Acad Sci U S A. 
2009;106(27):11376–11381.

 4. Boveroux  P, et  al. Breakdown of within- and between-
network resting state functional magnetic resonance 
imaging connectivity during propofol-induced loss of 
consciousness. Anesthesiology. 2010;113(5):1038–1053.

 5. Boly M, et al. Functional connectivity in the default network 
during resting state is preserved in a vegetative but not in a 
brain dead patient. Hum Brain Mapp. 2009;30(8):2393–2400.

 6. Centeno M, et al. Network connectivity in epilepsy: resting 
state fMRI and EEG-fMRI contributions. Front Neurol. 
2014;5:93.

 7. Vemuri P, et al. Resting state functional MRI in Alzheimer’s 
disease. Alzheimers Res Ther. 2012;4(1):2.

 8. Sorg C, et al. Selective changes of resting-state networks in 
individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci 
U S A. 2007;104(47):18760–18765.

 9. Wang K, et al. Discriminative analysis of early Alzheimer’s 
disease based on two intrinsically anti-correlated networks 
with resting-state fMRI. Med Image Comput Comput Assist 
Interv. 2006;9(Pt 2):340–347.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article-abstract/42/3/zsy235/5208407 by U

niversity of W
estern O

ntario user on 03 Septem
ber 2019



Houldin et al. | 9

 10. Yu  Q, et  al. Brain connectivity networks in schizophrenia 
underlying resting state functional magnetic resonance 
imaging. Curr Top Med Chem. 2012;12(21):2415–2425. 
doi:10.2174/156802612805289890.

 11. Shulman  GL, et  al. Common blood flow changes across 
visual tasks: i.  increases in subcortical structures and 
cerebellum but not in nonvisual cortex. J Cogn Neurosci. 
1997;9(5):624–647.

 12. Raichle ME, et al. A default mode of brain function. Proc Natl 
Acad Sci U S A. 2001;98(2):676–682.

 13. Damoiseaux  JS, et  al. Consistent resting-state networks 
across healthy subjects. Proc Natl Acad Sci U S A. 
2006;103(37):13848–13853.

 14. Smith SM, et al. Correspondence of the brain’s functional 
architecture during activation and rest. Proc Natl Acad Sci U 
S A. 2009;106(31):13040–13045.

 15. Tagliazucchi  E, et  al. Breakdown of long-range temporal 
dependence in default mode and attention networks during 
deep sleep. Proc Natl Acad Sci U S A. 2013;110(38):15419–15424.

 16. Stickgold  R. Sleep-dependent memory consolidation. 
Nature. 2005;437(7063):1272–1278.

 17. Marshall L, et al. The contribution of sleep to hippocampus-
dependent memory consolidation. Trends Cogn Sci. 
2007;11(10):442–450.

 18. Rattenborg NC, et al. Hippocampal memory consolidation 
during sleep: a comparison of mammals and birds. Biol Rev 
Camb Philos Soc. 2011;86(3):658–691.

 19. Fogel S, et al. Reactivation or transformation? Motor memory 
consolidation associated with cerebral activation time-
locked to sleep spindles. PLoS One. 2017;12(4):e0174755.

 20. Fang Z, et al. Neural Correlates of human cognitive abilities 
during sleep. BioRxiv April 2017:130500. doi:10.1101/130500.

 21. Nelson JP, et al. REM sleep burst neurons, PGO waves, and eye 
movement information. J Neurophysiol. 1983;50(4):784–797.

 22. Hobson  JA, et  al. Dreaming and the brain: toward a 
cognitive neuroscience of conscious states. Behav Brain Sci. 
2000;23(6):793-842. doi:10.1017/S0140525X00003976.

 23. Klemm  WR. Why does rem sleep occur? A  wake-up 
hypothesis. Front Syst Neurosci. 2011;5:73.

 24. Iber  C, et  al. The AASM Manual for the Scoring of Sleep 
and Associated Events: Rules, Terminology and Technical 
Specifications; 2007. Westchester, IL: American Academy of 
Sleep Medecine. doi:10.1002/ejoc.201200111

 25. Larson-Prior  LJ, et  al. Cortical network functional 
connectivity in the descent to sleep. Proc Natl Acad Sci U S A. 
2009;106(11):4489–4494.

 26. Beck AT, et al. Manual for the Beck Depression Inventory-II. 
1996. San Antonio, TX: Psychological.

 27. Beck  AT, et  al. An inventory for measuring clinical 
anxiety: psychometric properties. J Consult Clin Psychol. 
1988;56(6):893–897. doi:10.1037/0022-006X.56.6.893.

 28. Douglass  AB, et  al. The sleep disorders questionnaire. 
I: creation and multivariate structure of SDQ. Sleep. 
1994;17(2):160–167. doi:10.1093/sleep/17.2.160.

 29. Allen  PJ, et  al. A method for removing imaging artifact 
from continuous EEG recorded during functional MRI. 
Neuroimage. 2000;12(2):230–239.

 30. Allen  PJ, et  al. Identification of EEG events in the MR 
scanner: the problem of pulse artifact and a method for its 
subtraction. Neuroimage. 1998;8(3):229–239.

 31. Delorme  A, et  al. EEGLAB: an open source toolbox for 
analysis of single-trial EEG dynamics including independent 
component analysis. J Neurosci Methods. 2004;134(1):9–21.

 32. Mulert C, et  al., ed. EEG-fMRI; Physiological Basis, Technique, 
and Applications. Switzerland: Springer Nature; 2009;538. 
doi:10.1007/978-3-540-87919-0.

 33. Smith  SM, et  al. Advances in functional and structural 
MR image analysis and implementation as FSL. 
NeuroImage. 2004;23(Suppl 1):S208–S219. doi:10.1016/j.
neuroimage.2004.07.051.

 34. Jenkinson  M, et  al. Improved optimization for the robust 
and accurate linear registration and motion correction of 
brain images. Neuroimage. 2002;17(2):825–841.

 35. Smith  SM. Fast robust automated brain extraction. Hum 
Brain Mapp. 2002;17(3):143–155.

 36. Salimi-Khorshidi  G, et  al. Automatic denoising of 
functional MRI data: combining independent component 
analysis and hierarchical fusion of classifiers. Neuroimage. 
2014;90:449–468.

 37. Griffanti L, et al. ICA-based artefact removal and accelerated 
fMRI acquisition for improved resting state network 
imaging. Neuroimage. 2014;95:232–247.

 38. Beckmann CF, et  al. Probabilistic independent component 
analysis for functional magnetic resonance imaging. IEEE 
Trans Med Imaging. 2004;23(2):137–152.

 39. Tong Y, et al. Can apparent resting state connectivity arise 
from systemic fluctuations? Front Hum Neurosci. 2015;9:285. 
doi:10.3389/fnhum.2015.00285.

 40. Reineberg  AE, et  al. Resting-state networks predict 
individual differences in common and specific aspects of 
executive function. Neuroimage. 2015;104:69–78.

 41. Griffanti  L, et  al. Hand classification of fMRI ICA noise 
components. Neuroimage. 2017;154:188–205.

 42. Kelly  RE Jr, et  al. Visual inspection of independent 
components: defining a procedure for artifact removal 
from fMRI data. J Neurosci Methods. 2010;189(2):233–245.

 43. De  Martino  F, et  al. Classification of fMRI independent 
components using IC-fingerprints and support vector 
machine classifiers. Neuroimage. 2007;34(1):177–194.

 44. Ray KL, et al. ICA model order selection of task co-activation 
networks. Front Neurosci. 2013;7:237.

 45. Birn RM, et  al. The effect of scan length on the reliability 
of resting-state fMRI connectivity estimates. Neuroimage. 
2013;83:550–558.

 46. Chow  HM, et  al. Rhythmic alternating patterns of brain 
activity distinguish rapid eye movement sleep from 
other states of consciousness. Proc Natl Acad Sci U S A. 
2013;110(25):10300–10305.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article-abstract/42/3/zsy235/5208407 by U

niversity of W
estern O

ntario user on 03 Septem
ber 2019


